7 research outputs found

    ICln ion channel splice variants in Caenorhabditis elegans: voltage dependence and interaction with an operon partner protein.

    Get PDF
    Abstract ICln is an ion channel identified by expression cloning using a cDNA library from Madin-Darby canine kidney cells. In all organisms tested so far, only one transcript for the ICln protein could be identified. Here we show that two splice variants of the ICln ion channel can be found in Caenorhabditis elegans. Moreover, we show that these two splice variants of the ICln channel protein, which we termed IClnN1 and IClnN2, can be functionally reconstituted and tested in an artificial lipid bilayer. In these experiments, the IClnN1-induced currents showed no voltage-dependent inactivation, whereas the IClnN2-induced currents fully inactivated at positive potentials. The molecular entity responsible for the voltage-dependent inactivation of IClnN2 is a cluster of positively charged amino acids encoded by exon 2a, which is absent in IClnN1. Our experiments suggest a mechanism of channel inactivation that is similar to the "ball and chain" model proposed for the Shaker potassium channel,i.e. a cluster of positively charged amino acids hinders ion permeation through the channel by a molecular and voltage-dependent interaction at the inner vestibulum of the pore. This hypothesis is supported by the finding that synthetic peptides with the same amino acid sequence as the positive cluster can transform the IClnN1-induced current to the current observed after reconstitution of IClnN2. Furthermore, we show that the nematode ICln gene is embedded in an operon harboring two additional genes, which we termed Nx and Ny. Co-reconstitution of Nx and IClnN2 and functional analysis of the related currents revealed a functional interaction between the two proteins, as evidenced by the fact that the IClnN2-induced current in the presence of Nx was no longer voltage-sensitive. The experiments described indicate that the genome organization in nematodes allows an effective approach for the identification of functional partner proteins of ion channels

    47 patients with FLNA associated periventricular nodular heterotopia

    Get PDF
    Background: Heterozygous loss of function mutations within the Filamin A gene in Xq28 are the most frequent cause of bilateral neuronal periventricular nodular heterotopia (PVNH). Most affected females are reported to initially present with difficult to treat seizures at variable age of onset. Psychomotor development and cognition may be normal or mildly to moderately impaired. Distinct associated extracerebral findings have been observed and may help to establish the diagnosis including patent ductus arteriosus Botalli, progressive dystrophic cardiac valve disease and aortic dissection, chronic obstructive lung disease or chronic constipation. Genotype-phenotype correlations could not yet be established. Methods: Sanger sequencing and MLPA was performed for a large cohort of 47 patients with Filamin A associated PVNH (age range 1 to 65 years). For 34 patients more detailed clinical information was available from a structured questionnaire and medical charts on family history, development, epileptologic findings, neurological examination, cognition and associated clinical findings. Available detailed cerebral MR imaging was assessed for 20 patients. Results: Thirty-nine different FLNA mutations were observed, they are mainly truncating (37/39) and distributed throughout the entire coding region. No obvious correlation between the number and extend of PVNH and the severity of the individual clinical manifestation was observed. 10 of the mutation carriers so far are without seizures at a median age of 19.7 years. 22 of 24 patients with available educational data were able to attend regular school and obtain professional education according to age. Conclusions: We report the clinical and mutation spectrum as well as MR imaging for a large cohort of 47 patients with Filamin A associated PVNH including two adult males. Our data are reassuring in regard to psychomotor and cognitive development, which is within normal range for the majority of patients. However, a concerning median diagnostic latency of 17 to 20 years was noted between seizure onset and the genetic diagnosis, intensely delaying appropriate medical surveillance for potentially life threatening cardiovascular complications as well as genetic risk assessment and counseling prior to family planning for this X-linked dominant inherited disorder with high perinatal lethality in hemizygous males

    Dacrystic seizures: demographic, semiologic, and etiologic insights from a multicenter study in long-term video-EEG monitoring units.

    No full text
    PURPOSE: To provide an estimate of the frequency of dacrystic seizures in video-electroencephalography (EEG) long-term monitoring units of tertiary referral epilepsy centers and to describe the clinical presentation of dacrystic seizures in relationship to the underlying etiology. METHODS: We screened clinical records and video-EEG reports for the diagnosis of dacrystic seizures of all patients admitted for video-EEG long-term monitoring at five epilepsy referral centers in the United States and Germany. Patients with a potential diagnosis of dacrystic seizures were identified, and their clinical charts and video-EEG recordings were reviewed. We included only patients with: (1) stereotyped lacrimation, sobbing, grimacing, yelling, or sad facial expression; (2) long-term video-EEG recordings (at least 12 h); and (3) at least one brain magnetic resonance imaging (MRI) study. KEY FINDINGS: Nine patients (four female) with dacrystic seizures were identified. Dacrystic seizures were identified in 0.06-0.53% of the patients admitted for long-term video-EEG monitoring depending on the specific center. Considering our study population as a whole, the frequency was 0.13%. The presence of dacrystic seizures without other accompanying clinical features was found in only one patient. Gelastic seizures accompanied dacrystic seizures in five cases, and a hypothalamic hamartoma was found in all of these five patients. The underlying etiology in the four patients with dacrystic seizures without gelastic seizures was left mesial temporal sclerosis (three patients) and a frontal glioblastoma (one patient). All patients had a difficult-to-control epilepsy as demonstrated by the following: (1) at least three different antiepileptic drugs were tried in each patient, (2) epilepsy was well controlled with antiepileptic drugs in only two patients, (3) six patients were considered for epilepsy surgery and three of them underwent a surgical/radiosurgical or radioablative procedure. Regarding outcome, antiepileptic drugs alone achieved seizure freedom in two patients and did not change seizure frequency in another patient. Radiosurgery led to moderately good seizure control in one patient and did not improve seizure control in another patient. Three patients were or are being considered for epilepsy surgery on last follow-up. One patient remains seizure free 3 years after epilepsy surgery. SIGNIFICANCE: Dacrystic seizures are a rare but clinically relevant finding during video-EEG monitoring. Our data show that when the patient has dacrystic and gelastic seizures, the cause is a hypothalamic hamartoma. In contrast, when dacrystic seizures are not accompanied by gelastic seizures the underlying lesion is most commonly located in the temporal cortex

    Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry

    No full text
    Background: Evidence for the comparative teratogenic risk of antiepileptic drugs is insufficient, particularly in relation to the dosage used. Therefore, we aimed to compare the occurrence of major congenital malformations following prenatal exposure to the eight most commonly used antiepileptic drugs in monotherapy. Methods: We did a longitudinal, prospective cohort study based on the EURAP international registry. We included data from pregnancies in women who were exposed to antiepileptic drug monotherapy at conception, prospectively identified from 42 countries contributing to EURAP. Follow-up data were obtained after each trimester, at birth, and 1 year after birth. The primary objective was to compare the risk of major congenital malformations assessed at 1 year after birth in offspring exposed prenatally to one of eight commonly used antiepileptic drugs (carbamazepine, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate, and valproate) and, whenever a dose dependency was identified, to compare the risks at different dose ranges. Logistic regression was used to make direct comparisons between treatments after adjustment for potential confounders and prognostic factors. Findings: Between June 20, 1999, and May 20, 2016, 7555 prospective pregnancies met the eligibility criteria. Of those eligible, 7355 pregnancies were exposed to one of the eight antiepileptic drugs for which the prevalence of major congenital malformations was 142 (10·3%) of 1381 pregnancies for valproate, 19 (6·5%) of 294 for phenobarbital, eight (6·4%) of 125 for phenytoin, 107 (5·5%) of 1957 for carbamazepine, six (3·9%) of 152 for topiramate, ten (3·0%) of 333 for oxcarbazepine, 74 (2·9%) of 2514 for lamotrigine, and 17 (2·8%) of 599 for levetiracetam. The prevalence of major congenital malformations increased with the dose at time of conception for carbamazepine (p=0·0140), lamotrigine (p=0·0145), phenobarbital (p=0·0390), and valproate (
    corecore